Secure IoT-Based Real-Time Water Level Monitoring System Using ESP32 for Critical Infrastructure
Mahmood A. Al-Shareeda ;
Ahmed Mohammed Ali ;
Mustafa Adel Hammoud ;
Zaid Haider Muhammad Kazem ;
Muslim Aqeel Hussein
Published: 2025/04/10
Abstract
Many sectors rely on accurate tank levels, including those dealing with water management, farming, and industry. For effective use, overflow prevention, planning, and resource management, accurate water level measurement is essential. One of the main goals of this research is to find a way to use high- tech sensors to determine how much water is in a tank. In order to gauge how long it takes for sound waves to travel from the water’s surface to return to the sensor, the suggested system makes use of ultrasonic sensors. The technology determines the precise measurement of the water level by analyzing the reflected waves, which in turn determine the distance between the sensor and the water level. We will construct a prototype and test it in a controlled laboratory setting to ensure the system works as intended. An ESP32 microcontroller, an ultrasonic sensor, and a display device showing the water level in real-time will make up the prototype. This study is important because it has the ability to improve water management methods and encourage the efficient use of resources. In order to maximize efficiency, minimize waste, and guarantee sustainable practices, enterprises rely on precise water level assessments. In addition, the system can help find problems with the tank quickly, so maintenance can be done when it’s needed and accidents can be avoided.
Keywords
How to Cite the Article
A. Al-Shareeda, M., Mohammed Ali, A., Adel Hammoud, M., Haider Muhammad Kazem, Z., & Aqeel Hussein, M. (2025). Secure IoT-Based Real-Time Water Level Monitoring System Using ESP32 for Critical Infrastructure. Journal of Cyber Security and Risk Auditing, 2025(2), 44–52. https://doi.org/10.63180/jcsra.thestap.2025.2.4
Secure IoT-Based Real-Time Water Level Monitoring System Using ESP32 for Critical Infrastructure is licensed under CC BY 4.0
References
- Al-Shareeda, M. A., Anbar, M., Alazzawi, M. A., Manickam, S., & Hasbullah, I. H. (2020). Security schemes based conditional privacy-preserving in vehicular ad hoc networks. Indonesian Journal of Electrical Engineering and Computer Science, 21(1).
- Al-Shareeda, M. A., Anbar, M., Manickam, S., Hasbullah, I. H., Abdullah, N., Hamdi, M. M., & Al-Hiti, A. S. (2020). NE-CPPA: A new and efficient conditional privacy-preserving authentication scheme for vehicular ad hoc networks (VANETs). Applied Mathematics, 14(6), 1–10.
- Al-Shareeda, M. A., Gaber, T., Alqarni, M. A., Alkinani, M. H., Almazroey, A. A., & Almazroi, A. A. (2025). Chebyshev polynomial based emergency conditions with authentication scheme for 5G-assisted vehicular fog computing. IEEE Transactions on Dependable and Secure Computing.
- Al-Shareeda, M. A., Manickam, S., Saare, M. A., & Arjuman, N. C. (2023). Proposed security mechanism for preventing fake router advertisement attack in IPv6 link-local network. Indonesian Journal of Electrical Engineering and Computer Science, 29, 518–526.
- Almazroi, A. A., Alqarni, M. A., Al-Shareeda, M. A., Alkinani, M. H., Almazroey, A. A., & Gaber, T. (2024). FCA-VBN: Fog computing-based authentication scheme for 5G-assisted vehicular blockchain network. Internet of Things, 25, 101096.
- AlMetwally, S. A. H., Hassan, M. K., & Mourad, M. H. (2020). Real-time Internet of Things (IoT)-based water quality management system. Procedia CIRP, 91, 478–485.
- Baballe, M. A., Muhammad, A. S., Usman, F. A., Mustapha, N. K., Naisa, A. H. K., & Shehu, A. K. (2022). A review of an automatic water level indicator. GJR Publication, Global Journal of Research in Engineering and Computer Science, 2(03). Retrieved from https://gjrpublication.com/gjrecs
- Barbade, G., Shreyas, C., Vedant, S., Vaibhav, N., & Umesh, P. (2021). Automatic water tank filling system with water level indicator. Indian Journal of Microprocessors and Microcontroller (IJMM).
- Chalchisa, D., Megersa, M., & Beyene, A. (2018). Assessment of the quality of drinking water in storage tanks and its implication on the safety of urban water supply in developing countries. Environmental Systems Research, 6, 1–6.
- Djalilov, A., Sobirov, E., Nazarov, O., Urolov, S., & Gayipov, I. (2023). Study on automatic water level detection process using ultrasonic sensor. In IOP Conference Series: Earth and Environmental Science (Vol. 1142, p. 012020). IOP Publishing.
- Jan, F., Min-Allah, N., Saeed, S., Iqbal, S. Z., & Ahmed, R. (2022). IoT-based solutions to monitor water level, leakage, and motor control for smart water tanks. Water, 14(3), 309.
- Johari, A., Abd Wahab, M. H., Latif, N. S. A., Ayob, M. E., Ayob, M. I., Ayob, M. A., & Mohd, M. N. H. (2011). Tank water level monitoring system using GSM network. International Journal of Computer Science and Information Technologies, 2(3), 1114–1120.
- Kulkarni, S. A., Raikar, V. D., Rahul, B., Rakshitha, L., Sharanya, K., & Jha, V. (2020). Intelligent water level monitoring system using IoT. In 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) (pp. 1–5). IEEE.
- Pandey, A., Andhale, G., Sonawane, A., Amrutkar, A., & Andhare, T. (2022). Automatic water level indicator and controller. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(11), 1043–1047.
- Pereira, G. P., Chaari, M. Z., & Daroge, F. (2023). IoT-enabled smart drip irrigation system using ESP32. IoT, 4(3), 221–243.
- Rachel, P. N., Sophia, D., Rani, G. S., Rishika, J. J., & Annapurna, P. S. (2019). Automatic water level indicator and controller by using Arduino. International Journal of Research in Engineering and Technology, eISSN: 2319–1163.
- Rizzolo, S., Périsse, J., Boukenter, A., Ouerdane, Y., Marin, E., Macé, J. R., Cannas, M., & Girard, S. (2017). Real-time monitoring of water level and temperature in storage fuel pools through optical fibre sensors. Scientific Reports, 7(1), 8766.
- Sheng, J. (2019). Real-time DC water tank level control using Arduino Mega 2560. In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE) (pp. 635–640). IEEE.
- Singh, R., Baz, M., Gehlot, A., Rashid, M., Khurana, M., Akram, S. V., Alshamrani, S. S., & AlGhamdi, A. S. (2021). Water quality monitoring and management of building water tank using industrial internet of things. Sustainability, 13(15), 8452.
- Hajjaj, S. S. H., Sultan, M. T. H., Moktar, M. H., & Lee, S. H. (2020). Utilizing the Internet of Things (IoT) to develop a remotely monitored autonomous floodgate for water management and control. Water, 12(2), 502.
- Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7).
- Olisa, S. C., Asiegbu, C. N., Olisa, J. E., Ekengwu, B. O., Shittu, A. A., & Eze, M. C. (2021). Smart two-tank water quality and level detection system via IoT. Heliyon, 7(8).
- Pereira, G. P., Chaari, M. Z., & Daroge, F. (2023). IoT-enabled smart drip irrigation system using ESP32. IoT, 4(3), 221–243. https://doi.org/10.3390/iot4030013