Framework for Node Detection in Cloud Computing: A Multi-Metric Approach Integrating Security, Availability, and Latency Factors
Ahmed Alruwaili ;
Mohammed Maayah
Published: 2025
Abstract
The imperative to ascertain the operational integrity and fortify the security of individual nodes within expansive cloud computing infrastructures underpins the very feasibility of delivering dependable services and averting cascading systemic failures. This research delineates a sophisticated, equation-based framework meticulously engineered for node detection, which articulates and assesses node behavior through a rigorous mathematical formalization integrating salient performance and security determinants. The articulated model synthesizes metrics including operational delay, service availability, authentication success probabilities, and quantified security anomalies into a cohesive detection apparatus. Through systematic solution and perpetual re-evaluation of these constitutive equations, the system dynamically discerns aberrant, compromised, or overtly malicious nodes with substantially augmented acuity. This framework ingeniously employs principles derived from linear systems theory, probabilistic reasoning, and optimization paradigms to precisely quantify departures from normative node operational envelopes. Comprehensive simulation experiments, executed across a spectrum of variegated cloud deployment scenarios, convincingly substantiate the framework’s proficiency in achieving early-stage anomaly identification, concurrently safeguarding systemic performance benchmarks and curtailing the incidence of erroneous positive identifications. Such an equation-centric paradigm proffers a computationally lean and eminently scalable alternative to prevalent, often resource-intensive, monitoring architectures, thereby materially advancing the ongoing pursuit of more resilient and secure cloud ecosystems
Keywords
Framework for Node Detection in Cloud Computing: A Multi-Metric Approach Integrating Security, Availability, and Latency Factors is licensed under CC BY 4.0
References
- Ali, A., Almaiah, M. A., Hajjej, F., Pasha, M. F., Fang, O. H., Khan, R., ... & Zakarya, M. (2022). An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network. Sensors, 22(2), 572.
- Almaiah, M. A., Hajjej, F., Ali, A., Pasha, M. F., & Almomani, O. (2022). A novel hybrid trustworthy decentralized authentication and data preservation model for digital healthcare IoT based CPS. Sensors, 22(4), 1448.
- Ficco, M., Tasquier, L., & Aversa, R. (2013). Intrusion detection in cloud computing. In 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (pp. 276–283). IEEE.
- Ali, A., Rahim, H. A., Pasha, M. F., Dowsley, R., Masud, M., Ali, J., & Baz, M. (2021). Security, privacy, and reliability in digital healthcare systems using blockchain. Electronics, 10(16), 2034.
- Watson, M. R., Marnerides, A. K., Mauthe, A., Hutchison, D., et al. (2015). Malware detection in cloud computing infrastructures. IEEE Transactions on Dependable and Secure Computing, 13(2), 192–205.
- Almaiah, M. A., Ali, A., Hajjej, F., Pasha, M. F., & Alohali, M. A. (2022). A lightweight hybrid deep learning privacy preserving model for FC-based industrial internet of medical things. Sensors, 22(6), 2112.
- Aljaidi, M., Alsarhan, A., Al-Fraihat, D., Al-Arjan, A., Igried, B., El-Salhi, S. M., Khalid, M., & Al-Na’amneh, Q. (2023). Cybersecurity threats in the era of AI: Detection of phishing domains through classification rules. In 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (pp. 1–6). IEEE.
- Gu, K., Dong, X., & Jia, W. (2020). Malicious node detection scheme based on correlation of data and network topology in fog computing-based VANETs. IEEE Transactions on Cloud Computing, 10(2), 1215–1232.
- Al-Na’amneh, Q., Aljawarneh, M., Hazaymih, R., & Al Mamlook, R. E. (2025). Ethical issues in cybersecurity for autonomous vehicles (AV) and automated driving: A comprehensive review. In Utilizing AI in Network and Mobile Security for Threat Detection and Prevention (pp. 173–196). IGI Global Scientific Publishing.
- Li, Y., Jiang, Z. M., Li, H., Hassan, A. E., He, C., Huang, R., Zeng, Z., Wang, M., & Chen, P. (2020). Predicting node failures in an ultra-large-scale cloud computing platform: An AIOps solution. ACM Transactions on Software Engineering and Methodology (TOSEM), 29(2), 1–24.
- Velliangiri, S., Karthikeyan, P., & Kumar, V. V. (2021). Detection of distributed denial of service attack in cloud computing using the optimization-based deep networks. Journal of Experimental & Theoretical Artificial Intelligence, 33(3), 405–424.
- Al-Na’amneh, Q., Aljaidi, M., Gharaibeh, H., Nasayreh, A., Al Mamlook, R. E., Almatarneh, S., Alzu’bi, D., & Husien, A. S. (2023). Feature selection for robust spoofing detection: A chi-square-based machine learning approach. In 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (pp. 1–7). IEEE.
- Alshammari, A., & Aldribi, A. (2021). Apply machine learning techniques to detect malicious network traffic in cloud computing. Journal of Big Data, 8(1), 90.
- Abu-Zaid, A., Aljaidi, M., Al-Na’amneh, Q., Samara, G., Alsarhan, A., & Qadoumi, B. (2025). Advancements and challenges in the Internet of Drones security issues: A comprehensive review. In Machine Intelligence Applications in Cyber-Risk Management (pp. 1–24). IGI Global.
- Chang, V., Golightly, L., Modesti, P., Xu, Q. A., Doan, L. M. T., Hall, K., Boddu, S., & Kobusinska, A. (2022). A survey on intrusion detection systems for fog and cloud computing. Future Internet, 14(3), 89.
- Alwakeel, A. M. (2021). An overview of fog computing and edge computing security and privacy issues. Sensors, 21(24), 8226.
- SaiSindhuTheja, R., & Shyam, G. K. (2021). An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment. Applied Soft Computing, 100, 106997.
- Aljawarneh, M. (2025). Ethical issues in cybersecurity for autonomous vehicles (AV) and automated driving. In Utilizing AI in Network and Mobile Security for Threat Detection and Prevention (p. 173). IGI Global Scientific Publishing.
- Sheikh, M. S., Liang, J., & Wang, W. (2020). Security and privacy in vehicular ad hoc network and vehicle cloud computing: A survey. Wireless Communications and Mobile Computing, 2020(1), 5129620.
- Rani, P., Singh, S., & Singh, K. (2024). Cloud computing security: A taxonomy, threat detection and mitigation techniques. International Journal of Computers and Applications, 46(5), 348–361.
- Dhingra, S., Madda, R. B., Patan, R., Jiao, P., Barri, K., & Alavi, A. H. (2021). Internet of Things-based fog and cloud computing technology for smart traffic monitoring. Internet of Things, 14, 100175.
- Pasham, S. D. (2021). Graph-based models for multi-tenant security in cloud computing. International Journal of Modern Computing, 4(1), 1–28.
- Kumar, M., & Singh, A. K. (2020). Distributed intrusion detection system using blockchain and cloud computing infrastructure. In 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 248–252). IEEE.
- Kumari, P., & Kaur, P. (2021). A survey of fault tolerance in cloud computing. Journal of King Saud University - Computer and Information Sciences, 33(10), 1159–1176.
- You, D. (2024). Application of cloud computing detection based on sensor networks in enterprise economic statistics. Measurement: Sensors, 34, 101254.
- Alshehri, M., & Panda, B. (2020). Minimizing data breach by a malicious fog node within a fog federation. In 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud) / 2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom) (pp. 36–43). IEEE.
- Karthika, A., & Muthukumaran, N. (2022). An ADS-PAYG approach using trust factor against economic denial of sustainability attacks in cloud storage. Wireless Personal Communications, 122(1), 69–85.
- Sarkar, S., Choudhary, G., Shandilya, S. K., Hussain, A., & Kim, H. (2022). Security of zero trust networks in cloud computing: A comparative review. Sustainability, 14(18), 11213.
- Wang, T., Zhang, G., Bhuiyan, M. Z. A., Liu, A., Jia, W., & Xie, M. (2020). A novel trust mechanism based on fog computing in sensor–cloud system. Future Generation Computer Systems, 109, 573–582.
- Bharany, S., Badotra, S., Sharma, S., Rani, S., Alazab, M., Jhaveri, R. H., & Gadekallu, T. R. (2022). Energy efficient fault tolerance techniques in green cloud computing: A systematic survey and taxonomy. Sustainable Energy Technologies and Assessments, 53, 102613.
- Sharma, S. (2024). Strengthening cloud security with AI-based intrusion detection systems.
- Welsh, T., & Benkhelifa, E. (2020). On resilience in cloud computing: A survey of techniques across the cloud domain. ACM Computing Surveys (CSUR), 53(3), 1–36.
- Sadaf, K., & Sultana, J. (2020). Intrusion detection based on autoencoder and isolation forest in fog computing. IEEE Access, 8, 167059–167068.
- Wang, Y., & Yang, X. (2025). Research on enhancing cloud computing network security using artificial intelligence algorithms. arXiv preprint arXiv:2502.17801.
- Singh, A., & Chatterjee, K. (2021). Securing smart healthcare system with edge computing. Computers & Security, 108, 102353.
- Shahid, M. A., Islam, N., Alam, M. M., Su’ud, M. M., & Musa, S. (2020). A comprehensive study of load balancing approaches in the cloud computing environment and a novel fault tolerance approach. IEEE Access, 8, 130500–130526.
- Senapati, B. R., Swain, R. R., & Khilar, P. M. (2022). Hard and soft fault detection using cloud-based VANET. In Intelligent and Cloud Computing: Proceedings of ICICC 2021 (pp. 133–143). Springer.
- Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., & Zomaya, A. Y. (2021). Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet of Things Journal, 9(12), 10257–10271.
- Kushwah, G. S., & Ranga, V. (2020). Voting extreme learning machine based distributed denial of service attack detection in cloud computing. Journal of Information Security and Applications, 53, 102532.
- Liang, J., Zhang, M., & Leung, V. C. M. (2020). A reliable trust computing mechanism based on multisource feedback and fog computing in social sensor cloud. IEEE Internet of Things Journal, 7(6), 5481–5490.
- El Kafhali, S., El Mir, I., & Hanini, M. (2022). Security threats, defense mechanisms, challenges, and future directions in cloud computing. Archives of Computational Methods in Engineering, 29(1), 223–246.
- Patel, S. (2022). Edge computing vs. traditional cloud: Performance & security considerations. Spanish Journal of Innovation and Integrity, 12, 312–320.
- Abdullayeva, F. J. (2021). Advanced persistent threat attack detection method in cloud computing based on autoencoder and softmax regression algorithm. Array, 10, 100067.
- Mourad, A., Tout, H., Abdel Wahab, O., Otrok, H., & Dbouk, T. (2020). Ad hoc vehicular fog enabling cooperative low-latency intrusion detection. IEEE Internet of Things Journal, 8(2), 829–843.
- Javadpour, A., Wang, G., & Rezaei, S. (2020). Resource management in a peer to peer cloud network for IoT. Wireless Personal Communications, 115(3), 2471–2488.
- Gupta, A., & Simon, R. (2024). Enhancing security in cloud computing with anomaly detection using random forest. In 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 1–6). IEEE.
- Reddy, S. R., & Shyam, G. K. (2022). A machine learning based attack detection and mitigation using a secure SaaS framework. Journal of King Saud University – Computer and Information Sciences, 34(7), 4047–4061.
- Labiod, Y., Korba, A. A., & Ghoualmi, N. (2022). Fog computing-based intrusion detection architecture to protect IoT networks. Wireless Personal Communications, 125(1), 231–259.
- Al-Na’amneh, Q., Almomani, A., Nasayreh, A., Nahar, K. M. O., Gharaibeh, H., Al Mamlook, R. E., & Alauthman, M. (2024). Next generation image watermarking via combined DWT-SVD technique. In 2024 2nd International Conference on Cyber Resilience (ICCR) (pp. 1–10). IEEE.
- Jaradat, A. S., Nasayreh, A., Al-Na’amneh, Q., Gharaibeh, H., & Al Mamlook, R. E. (2023). Genetic optimization techniques for enhancing web attacks classification in machine learning. In 2023 IEEE International Conference on Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing; Cloud and Big Data Computing; Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 0130–0136). IEEE.
- Al-Na’amneh, Q., Nasayreh, A. N., Al Mamlook, R., Gharaibeh, H., Alsheyab, A. M., & Almaiah, M. A. (2024). Improving memory malware detection in machine learning with random forest-based feature selection. In Risk Assessment and Countermeasures for Cybersecurity (pp. 96–114). IGI Global.
- Abu Laila, D., Al-Na’amneh, Q., Aljaidi, M., Nasayreh, A. N., Gharaibeh, H., Al Mamlook, R., & Alshammari, M. (2024). Enhancing 2D logistic chaotic map for gray image encryption. In Risk Assessment and Countermeasures for Cybersecurity (pp. 170–188). IGI Global.
- Al-Na’amneh, Q., Dhifallah, W., Hazaymih, R., Almaiah, M. A., Alsheyab, A., Alshinwan, M., & Qadoumi, B. (2025). DIS flooding attack impact in RPL-based 6LoWPAN network. In Machine Intelligence Applications in Cyber-Risk Management (pp. 69–84). IGI Global Scientific Publishing.